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Table 5 (cont.) 

W~ (eV) W~ (eV) 
Salt (equation 13) (experimental) 
LiBr 1.68 1-80" 
LiI 1.47 1.34* 
NaCI 2.20 2-12" 
NaBr 2.11 1.68* 
KC1 2.15 2-22* 
KBr 2.06 2.53* 
CsBr 1.86 2"0t 
CsI 1-83 1.91" 

* Boswarva & Lidiard (1967); 
]" Boswarva (1967). 

Table 6. Ws values 

Ws (eV) Ws (eV) Ws:t: (eV) 
Salt (equation 13) (Theoretical) (Theoretical) 
NaF 2.59 2.517* 
NaI 1.90 1.603" 
KF 2-37 2.419" 
KI 2"04 1"924" 1'87 
RbF 2"12 2"188" --  
RbC1 2"03 1"984" 2"17 
RbBr 1"96 1"979" 1"99 
RbI 1"88 1"900" 1"88 
CsF 1.96 1-954"~ - -  
CsC1 1-89 1.7841" 1.06 (CaCI) 

2"00 (NaC1) 

* Boswarva & Lidiard (1967); 
t Boswarva (1967); 
:~ Rao & Rao (1968). 

The values of  Ws calculated from equation (13) for 
various alkali halides are given in Tables 5 and 6 and 
compared with the experimental  values where available. 
Column 3 of  Table 6, gives the nearest theoretical 
values of  Ws calculated by Boswarva & Lidiard (1967), 

while column 4 gives those calculated by Rao & Rao 
(1968) employing a modified Born model  with a higher 
Van der Waals  term. In view of the simple model  used 
and the uncertainties in the experimental  observations, 
the agreement is excellent. 

Financial  assistance to one of  us (NGV) by the 
Ministry of Education is gratefully acknowledged. 
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General Method of Obtaining Best Helical Parameters from the Diffraction Pattern 

BY YUKIO MITSUI 

University of Tokyo, Hongo, Tokyo, Japan 

(Received 12 September 1969 and in revised form 20 October 1969) 

A practical method of obtaining the best helical parameters piP and p, where p is the rise per unit 
length along the screw axis and P is the pitch of the helix, is given, which consists of a graphical method 
followed by a least-squares analysis, and is particularly useful when the helix is non-integral and wheo 
the diffraction pattern is complicated by the existence of other crystalline or amorphous phases. The 
extension of the method to a coiled coil is also described. 

1. Introduction 

A theory of diffraction by helical structures was given 
by Cochran,  Crick & Vand (1952) (hereafter referred 
to as CCV) and has been successfully applied to various 
substances. A helical structure in which scattering units 

are arranged around a screw axis at a regular interval 
is fully described by three parameters p, p/P and r, 
where p is the rise per unit along the screw axis, P and 
r are the pitch and radius of  the helix, respectively. 
The parameter  p/P represents the angle of rotation per 
unit in fractions of  2z~ and was called 'unit  twist' by 
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Ramachandran (1960). The relation between these pa- 
rameters and the diffraction pattern is fully de- 
scribed in the CCV theory. However, the method of 
obtaining the best parameters from the diffraction pat- 
tern has so far been discussed only by Ramachandran 
(1960). This report presents a new and more general 
solution to this problem with respect to two parameters, 
p and p/P. The author has already reported a graphical 
method to find out p/P (Mitsui, 1966). 

2. S i m p l e  h e l i x  

The graphical method proposed in the previous paper 
is briefly summarized here. The basic equation is, 

~p=m~+n~(p/P) (1) 

where (~ is the height of the ith layer line from the 
equator in reciprocal space (in A-l), and ni, ms are the 
integers relating to this layer line (for the meaning of 
these integers, see CCV). The quantity (~p, which is 
denoted by ~rel, corresponds to the height of the layer 
line expressed in fractions of the height, I/p, of a 'Pe- 
rutz line'. Graphical representation of equation (1), 
or the ~ re l -p /P  diagram, shows the relative distribu- 
tion of various layer lines, each corresponding to a 
particular set of (n,m), as a function of piP. The best 
vahte of p/P may be obtained as the one which gives 
the best agreements between the observed and theo- 
reti~ al values of ff's and between the observed relative 
inte'lsities and the values of assigned n's. 

T i e  numerical method now presented gives the best 
valu .~ of not only p/P but also p. It needs the assign- 
men! of (n, m) [the (n, m)-assignment] to each observed 
laye~ line as a preliminary step. This will be most con- 
veni~ ntly done by the graphical method mentioned 
abo'~" (Mitsui, 1966). In this context, however, the 
diag~ am shown in the previous paper should be mod- 
ified so that n on each layer line is replaced by a set of 
(n,n,). The best set of (p,p/P) can be calculated by a 

least-squares method, that is, by minimizing the fol- 
lowing quantity 

S(p,p/P)= Y w,[~ip-{mt+m(p/P)}] 2 (2) 
i 

where w~ is the weight attached to the ith observation. 
This leads to the solution, 

where, 
p=A1/A,  p/P=A2/A (3) 

A= 

Al= 

A2= 

i i 

E E.,w,C, 
i i 

2 w,n,¢,, ~. w,m,~, 
i 

2 w,n~, 2 w,m,n, 
i i 

i i 

wAb(l ~ w, min, 
i i 

Discussion concerning the weights w~ will be given in 
§ 5. This method has recently been applied to diffrac- 
tion patterns of bacterial pili (Mitsui & Poole, 1969). 

3. E x t e n s i o n  to  a co i led  coi l  

Ramachandran (1960) introduced the concept 'the unit 
twist' into the diffraction theory of the coiled coil 
(Crick, 1953a). Equation (14) of his paper, by chang- 
ing his notation r / to (rel, is written 

top + tlq + (tl + to)S + m = f f r e l  (4) 

where p,q,s and m are the integers relating to the dif- 
fraction intensity (see Crick, 1953a). The quantities to 
and h are the unit twists of the major helix (No/M) 
and of the minor helix (N1/M), respectively, where M 

Table 1. Possible combinations of p, q, s and m under the restriction, 
[p[<2,  Iql<2,  [sl_<l andO<_H[=0.278 (q+s)+m]<_½ 

Gradient (p + s) Permissible Segment at 
for p= t0=0 

s - 2 - 1 0 1 2 q in (H) 

-1  - 3  - 2  -1  0 1 - 2  1 0-166 
- 1 1 0.444 

0 none --  
0 0 

2 0 0.278 

0 --2 --1 0 1 2 - 2 1 0.444 
- 1 none --  

0 0 0 
1 0 0"278 
2 none 

! - 1  0 1 2 3 - 2 none - -  
-1  0 0 

0 0 0-278 
1 none -- 
2 none 
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is the number of scattering units in the identity period c, 
No is the number of rotations made by the major helix 
in c, and N1 = N ' I - N 0 ,  N~ being the number of rota- 
tion in c made by the minor helix in the rotating frame 
which rotates along with the major helix. ~rel is defined 
in the same way with the simple helix, that is, ~rel = ~h, 
where h=c/M. Strictly speaking, there is another in- 
teger parameter d (Crick, 1953a), but this parameter is 

set to zero because only this value can give rise to 
layer lines of appreciable intensities. The modification 
for non-zero d is easy. A graphical representation of 
equation (4) gives the relative distribution of various 
layer lines, each corresponding to a particular set of 
(p,q,s, rn), as a function of to and tx. An example of 
such a diagram (~rel-to diagram) is shown in Fig. 1. 
In this case, h is fixed to ~ = 0.278 (e-helix). A diagram 

Fig. 1. ~rel-- to diagram. - -  
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with fixed to is also possible. The diagram in the special 
case t0=0, is nothing but a ~rel-p/P diagram for a 
simple helix. The procedure of finding out the best 
values of to and tl is similar to that of a simple helix, 
except that the survey is now two-dimensional. 

The method of preparing a ~rel-t0 diagram is ex- 
plained by taking Fig. 1 as an example. As is evident 
in Fig. 1, there are 'mirror' planes corresponding to 
~rel=0"5n (n=0, + 1 , . . . ) .  Since, by these mirrors, the 
signs of integersp, q and s are changed and m is changed 
to m' = - m + n, only the layer lines with 0 < (q + s)h + 
m <1 are independent. For simplicity, let us introduce 
the restriction IPl_<2, [ql <2  and Isl <- 1, so that only 
the prominent layer lines are considered. All the pos- 
sible combination of p, q and s are shown in Table 1. 
In contrast with the simple helix, up to three different 
sets* of (p,q,s,m) contribute to the same layer line at 
any value of to. Note that there is a relation p - q = con- 
stant between these sets. In Fig. 1 the sets (p,q,s,m) 
are denoted in the order ofq, p,s,m, since q is the domi- 
nant factor in determining the intensity provided to is 
small. For the same reason, different types of lines are 
used for different minimum Iql values. Layer lines 
which contain a set of (p,q,s,m) with p = q = 0  are 
shown by bold lines to indicate the potential meridional 
reflexions. 

In the same way as in the simple helix, a set of ob- 
served ~'s are compared with the theoretical ones on 
a series of ~rel-- to diagrams with various h. This leads 
to the assignment of a correct set (p,q,s,m) to each 
layer line. Once this has been done, the best values of 
to, tl and h are obtainable as the ones which make the 
following quantity minimum. 

S= ~ w~[~lh-{to(pi+sO+ti(qi+sO+m~}] z. (5) 
i 

The solution is, 

h=An/A, to=Ato/A, h=Atl/A, 
where 

with 

A = [A1,A2,A3[, An= [Ao, Az, A3] 
Ato= [/1x,/10,A3l, At1 = [/11,/1z, Ao[, 

/11 

/ I  2 - -  

I Z w,(p, +s,)¢, t ~ wi(q~ + s~)~ 

w~ 

2 1 ~ w~(p~ + sO ( q~ + s) 

~ wi(p.t 4- si)~ 

* Three is the number under the restriction assumed for the 
moment. It is infinite in general. 

l w~(p~+s~) (q~+si)~ 

~i w,(q, + s,) z I A3 = ~i 

~i w'(q' + s')~' / '  

Ao = ~ w~m~(q~ +sO 

~ w~m~ 

These formulae will be useful if well resolved diffrac- 
tion patterns of the coiled coil structure become avail- 
able. 

4. The advantage of the method 

The advantage of the use of 'the unit twist' and 'rise 
per scattering unit', in place of 'the identity period' 
and 'the number of residues or turns per identity 
period', has been discussed by Ramachandran (1960) 
and Dickerson (1964). The advantages of the present 
method may be summarized as follows: 

(A) By adopting a graphical method as the first step, 
it became very easy (1) to judge whether or not the pat- 
tern in question is that from a helical structure, (2) to 
distinguish between reflexions from two or more co- 
existing crystal phases, if any [such as the/?-phase in 
c~-poly-L-alanine fibers (Brown & Trotter, 1956)] and 
(3) to identify 'abnormal' reflexions (such as the reflex- 
ion from distorted side chains of poly-y-benzylgluta- 
mates (Mitsui, Iitaka & Tsuboi, 1967)]. 

(B) In the succeeding least-squares method, all the 
layer lines are treated on equal terms and no special 
dependence on the Perutz line or 'turn' layer line ap- 
pears. This is quite in contrast with various methods 
proposed thus far, and is more reasonable, because, 
for polymers in general, these two layer lines are not 
always measured with especially high precision. The 
present method is applicable even if the Perutz line 
and/or 'turn' layer line is not observable. 

5. Additional considerations 

On the weighting scheme 
An estimation of the weight factor appeared in equa- 

tions (2) and (3) is discussed below. Consider the sim- 
plest geometry with the fiber axis normal to the in- 
cident beam (the wavelength 2) and with the cylindrical 
film (radius R) with its axis parallel to the fiber axis. 
Starting from the equations ~=sinfl/2, tanfl=y/R,  
where y is the height of the layer line from the equator 
on the film, we get, 

A~= {Ay[1-(AO213/2- AR2[1-(202]}/2R (7) 

where Ay and A R are the errors accompanying y and 
R, respectively. Since, for a fiber diffraction pattern, 
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AR is usually much smaller than Ay, a reasonable 
weighting scheme will be obtained by setting w~= 
[1-(2(02]-3/2. wi increases rapidly if 2(~ is not small 
enough. Practically, however, the tilted axis method 
is more frequently used for 2~i > 0.3. Although general 
treatment for this case is complicated, a rough estima- 
tion may be given by considering the simplest case in 
which (1) the cylindrical film (radius R) is used with 
its axis normal to both the incident beam and fiber 
axis and (2) the fiber axis is tilted so that the meridional 
point of the layer line in question lies on the reflexion 
sphere. Starting from ( = 2  sin 0/2, 20=y/R,  where y 
is the height of the reflexion (this should be on the 
meridian of the photograph) and neglecting zlR again, 
we get 

w~ =[1 - (2(/2)2]-1/2 . 

The variation of w~ is not appreciable within the range, 
( 2 = 0 ~  1.0, which is practically important. Non-sys- 
tematic factors such as the diffuseness of individual re- 
flexions may be more important in deciding w~s. 

Extinction rules for a multistrand coiled coil 
The fact that coiled coil structures are very likely to 

occur as a multistrand rope (Crick, 1953b) must be 
taken into account for assigning (p, q, s, m). Let us con- 
sider the simplest case in which each strand is related 
by a rotational symmetry only. Using the revised for- 
mula of Fraser, MacRae & Miller (1964), it is easy 
to get the extinction rule that only the layer lines with 
q - p - d =  k N  (k = 0, + 1 . . . .  ) appear for the N strand 
coiled coil structure (Mitsui, 1968). If d is set to 0 as 

in the previous section, we have q - p = k N .  Similar 
considerations for the simple helix have already been 
made by Klug, Crick & Wyckoff (1958). 

The author wishes to express his sincere gratitude to 
Professor Y. Iitaka of the University of Tokyo, and 
Professor G. N. Ramachandran of the University of 
Madras for valuable discussions. 
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Application of the Symbolic Addition Procedure in Neutron Diffraction 
for Non-eentrosymmetrie Crystals 
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For non-centrosymmetric crystals containing both positive and negative scatterers of neutrons, the 
symbolic addition procedure has been tested as a means of obtaining phases of neutron reflexions. Test 
calculations were done for two structures, ~t-resorcinol and methyl GAG. 2HC1. H20, which have already 
been studied by neutron diffraction using conventional methods. It is found that this procedure yields 
the phase angles with reasonable accuracy. The average error in phases for ct-resorcinol was 14 ° and the 
Fo Fourier synthesis with these phases revealed the position of all the positive scatterers and three out 
of six hydrogen atoms. The average error in methyl GAG. 2HC1. H20 was 40 ° and only 10 positively 
scattering atoms out of 16 could be clearly seen in the Fourier map. For both the structures an Fo map 
was found to be superior to an E map. When the contribution of the negative scatterers to the total 
neutron scattering is less than 25 %, it has been shown that the symbolic addition method will apply for 
crystals containing up to 100 atoms per m,!t cell. 

Introduction 

In an earlier paper (Sikka, 1969) the author has shown 
that in centrosymmetric crystals, the application of the 

symbolic addition procedure (Karle & Karle, 1966) 
determines correctly the signs of about 95% of the 
neutron structure factors (with IEhl >-1.5) when the 
contribution of the negatively scattering atoms to the 


